Spectra of signed adjacency matrices

نویسنده

  • D. A. Gregory
چکیده

A signed adjacency matrix is a {−1, 0, 1}-matrix A obtained from the adjacency matrix A of a simple graph G by symmetrically replacing some of the 1’s of A by −1’s. Bilu and Linial have conjectured that if G is k-regular, then some A has spectral radius ρ(A) ≤ 2 √ k − 1. If their conjecture were true then, for each fixed k > 2, it would immediately guarantee the existence of infinite families of k-regular Ramanujan graphs, that is, families of graphs whose adjacency eigenvalues have second largest modulus at most 2 √ k − 1. This note presents some spectral properties that arose during an examination of the conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Adjacency Matrices and Descriptors of Signed Cycle Graphs

This paper deals with adjacency matrices of signed cycle graphs and chemical descriptors based on them. The eigenvalues and eigenvectors of the matrices are calculated and their efficacy in classifying different signed cycles is determined. The efficacy of some numerical indices is also examined. Mathematics Subject Classification 2010: Primary 05C22; Secondary 05C50, 05C90

متن کامل

Matrices in the Theory of Signed Simple Graphs

I discuss the work of many authors on various matrices used to study signed graphs, concentrating on adjacency and incidence matrices and the closely related topics of Kirchhoff (‘Laplacian’) matrices, line graphs, and very strong regularity.

متن کامل

Invertibility and Largest Eigenvalue of Symmetric Matrix Signings

The spectra of signed matrices have played a fundamental role in social sciences, graph theory, and control theory. In this work, we investigate the computational problems of identifying symmetric signings of matrices with natural spectral properties. Our results are twofold: 1. We show NP-completeness for the following three problems: verifying whether a given matrix has a symmetric signing th...

متن کامل

Matrices in the Theory of Signed Simple Graphs (Outline)

This is an expository survey of the uses of matrices in the theory of simple graphs with signed edges. A signed simple graph is a graph, without loops or parallel edges, in which every edge has been declared positive or negative. For many purposes the most significant thing about a signed graph is not the actual edge signs, but the sign of each circle (or ‘cycle’ or ’circuit’), which is the pro...

متن کامل

Spectral Aspects of Symmetric Matrix Signings∗

The spectra of signed matrices have played a fundamental role in social sciences, graph theory, and control theory. In this work, we investigate the computational problems of finding symmetric signings of matrices with natural spectral properties. Our results are the following: 1. We characterize matrices that have an invertible signing: a symmetric matrix has an invertible symmetric signing if...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012